Adaptive estimation of the hazard rate with multiplicative censoring

نویسندگان

  • G Chagny
  • Fabienne Comte
  • A. Roche
چکیده

We propose an adaptive estimation procedure of the hazard rate of a random variable X in the multiplicative censoring model, Y = XU , with U ∼ U([0, 1]) independent of X. The variable X is not directly observed: an estimator is built from a sample {Y1, ..., Yn} of copies of Y . It is obtained by minimisation of a contrast function over a class of general nested function spaces which can be generated e.g. by splines functions. The dimension of the space is selected by a penalised contrast criterion. The final estimator is proved to achieve the best bias-variance compromise and to reach the same convergence rate as the oracle estimator under conditions on the maximal dimension. The good behavior of the resulting estimator is illustrated over a simulation study. (A) LMRS, UMR CNRS 6085, Université de Rouen Normandie, France. [email protected] (B) MAP5 UMR CNRS 8145, Université Paris Descartes, France. [email protected] (C) CEREMADE UMR CNRS 7534, Université Paris-Dauphine, France. [email protected]

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

E-Bayesian Estimations of Reliability and Hazard Rate based on Generalized Inverted Exponential Distribution and Type II Censoring

Introduction      This paper is concerned with using the Maximum Likelihood, Bayes and a new method, E-Bayesian, estimations for computing estimates for the unknown parameter, reliability and hazard rate functions of the Generalized Inverted Exponential distribution. The estimates are derived based on a conjugate prior for the unknown parameter. E-Bayesian estimations are obtained based on th...

متن کامل

Adaptive warped kernel estimators

In this work, we develop a method of adaptive nonparametric estimation, based on "warped" kernels. The aim is to estimate a real-valued function s from a sample of random couples (X,Y ). We deal with transformed data (Φ(X), Y ), with Φ a one-to-one function, to build a collection of kernel estimators. The data-driven bandwidth selection is done with a method inspired by Goldenshluger and Lepski...

متن کامل

Model selection for hazard rate estimation in presence of censoring

Abstract This note presents an estimator of the hazard rate function based on right censored data. A collection of estimators is built from a regression-type contrast, in a general collection of linear models. Then, a penalised model selection procedure provides an estimator which satisfies an oracle inequality. In particular, we can prove that it is adaptive in the minimax sense on Hölder spaces.

متن کامل

Adaptive estimation of hazard functions

In this paper we obtain convergence rates for sieved maximumlikelihood estimators of the log-hazard function in a censoring model. We also establish convergence results for an adaptive version of the estimator based on the method of structural risk-minimization. Applications are discussed to tensor product spline estimators as well as to neural net and radial basis function sieves. We obtain si...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017